题目内容
根据所给的基本材料,请你进行适当的处理,编写一道综合题.编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
编写试题选取的材料是
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
分析:(1)过点Q作QD⊥AP于点D,利用相似三角形的判定与性质和三角形的面积解答;
(2)求得三角形的周长和面积,建立方程求得t,再代入函数解析式验证即可;
(3)由余弦定理分别用t表示PC、PQ,联立方程解决问题.
(2)求得三角形的周长和面积,建立方程求得t,再代入函数解析式验证即可;
(3)由余弦定理分别用t表示PC、PQ,联立方程解决问题.
解答:解:(1)过点Q作QD⊥AP于点D,则易证△AQD∽△ABC,
∴AQ:QD=AB:BC,
∴2t:DQ=5:3,
∴DQ=
t,
∴S△APQ=
×AP×QD=
(5-t)×
t,
∴y与t之间的函数关系式为:y=-
t2+3t;
(2)Rt△ACB的周长=3+4+5=12,Rt△ACB的面积=
×3×4=6,PQ恰好把Rt△ACB的周长平分.
即有AP+AQ=12÷2=6,即2t+5-t=6得t=1,PQ恰好把Rt△ACB的面积平分,
即有SAPQ=
×6=3;即y=-
t2+3t=3,
显然,代入t=1等式不成立,
所以不存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分;
(3)由题意可以知道,四边形PQP'C为菱形,那么PC=PQ,
因为 PC2=PB2+CB2-2×PB×CB×cosB,
(由图知道cosB=0.6)=t2+32-2t×3×0.6,
PQ2=AP2+AQ2-2×AP×AQ×cosA,
(由图知道cosA=0.8)=(5-t)2+(2t)2-2×(5-t)×2t×0.8,
∵PC=PQ,即t2+32-2t×3×0.6=(5-t)2+(2t)2-2×(5-t)×2t×0.8),
解得t1=2(因为0<t<2舍去),t2=
,
把t=
代入,PC2=t2+32-2t×3×0.6,
解得PC=
;
因此菱形的边长为
cm.
∴AQ:QD=AB:BC,
∴2t:DQ=5:3,
∴DQ=
6 |
5 |
∴S△APQ=
1 |
2 |
1 |
2 |
6 |
5 |
∴y与t之间的函数关系式为:y=-
3 |
5 |
(2)Rt△ACB的周长=3+4+5=12,Rt△ACB的面积=
1 |
2 |
即有AP+AQ=12÷2=6,即2t+5-t=6得t=1,PQ恰好把Rt△ACB的面积平分,
即有SAPQ=
1 |
2 |
3 |
5 |
显然,代入t=1等式不成立,
所以不存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分;
(3)由题意可以知道,四边形PQP'C为菱形,那么PC=PQ,
因为 PC2=PB2+CB2-2×PB×CB×cosB,
(由图知道cosB=0.6)=t2+32-2t×3×0.6,
PQ2=AP2+AQ2-2×AP×AQ×cosA,
(由图知道cosA=0.8)=(5-t)2+(2t)2-2×(5-t)×2t×0.8,
∵PC=PQ,即t2+32-2t×3×0.6=(5-t)2+(2t)2-2×(5-t)×2t×0.8),
解得t1=2(因为0<t<2舍去),t2=
10 |
9 |
把t=
10 |
9 |
解得PC=
| ||
9 |
因此菱形的边长为
| ||
9 |
点评:此题综合考查三角形的面积、勾股定理、余弦定理以及菱形的性质等知识.
练习册系列答案
相关题目