网址:http://m.1010jiajiao.com/timu_id_280462[举报]
[番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。
(Ⅰ)解:由题意可知
absinC=,2abcosC.
所以tanC=.
因为0<C<,
所以C=.
(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)
=sinA+cosA+sinA=sin(A+)≤.
当△ABC为正三角形时取等号,
所以sinA+sinB的最大值是.
[番茄花园1]1.
查看习题详情和答案>>汕头二中拟建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米(,为正常数)需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?
【解析】本试题主要考查了导数在研究函数中的运用。先求需打个桩位.再求解墙面所需费用为:,最后表示总费用,利用导数判定单调性,求解最值。
解:由题意可知,需打个桩位. …………………2分
墙面所需费用为:,……4分
∴所需总费用()…7分
令,则
当时,;当时,.
∴当时,取极小值为.而在内极值点唯一,所以.∴当时,(万元),即每隔3米打建一个桩位时,所需总费用最小为1170万元.
查看习题详情和答案>>
已知函数(为实数).
(Ⅰ)当时,求的最小值;
(Ⅱ)若在上是单调函数,求的取值范围.
【解析】第一问中由题意可知:. ∵ ∴ ∴.
当时,; 当时,. 故.
第二问.
当时,,在上有,递增,符合题意;
令,则,∴或在上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:. ∵ ∴ ∴.
当时,; 当时,. 故.
(Ⅱ) .
当时,,在上有,递增,符合题意;
令,则,∴或在上恒成立.∵二次函数的对称轴为,且
∴或或或
或. 综上
查看习题详情和答案>>
某化工厂生产化工产品,去年生产成本为50元/桶,现使生产成本平均每年降低28%,那么几年后每桶的生产成本为20元(lg2≈0.301 0,lg3≈0.477 1,精确到1年)?
[分析] 设x年后每桶的生产成本为20元,由题意列出关于x,50,28%,20之间的关系式,解出x.
查看习题详情和答案>>已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
查看习题详情和答案>>