题目内容

 [番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值。

 (Ⅰ)解:由题意可知

absinC=,2abcosC.

所以tanC=.

因为0<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

当△ABC为正三角形时取等号,

所以sinA+sinB的最大值是.

 

 


 [番茄花园1]1.

【答案】

 [番茄花园1] 解析:本题主要考查等差数列概念、求和公式等基础知识,同时考查运算求解能力及分析问题解决问题的能力。

 


 [番茄花园1]18.

练习册系列答案
相关题目

 [番茄花园1] 设O为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为

(A)x±y=0          (B)x±y=0

(C)x±=0         (D)±y=0

 

非选择题部分(共100分)

二,填空题:本大题共7小题,每小题4分,共28分。

 


 [番茄花园1]1.

 [番茄花园1] 已知函数f(x)= 若a,b,c均不相等,且f(a)= f(b)= f(c),则abc的取值范围是

(A)(1,10)  (B)(5,6)  (C)(10,12)  (D)(20,24)

 

 

二填空题:本大题共4小题,每小题5分。

 


 [番茄花园1]1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网