摘要:由三垂线定理.得.
网址:http://m.1010jiajiao.com/timu_id_280239[举报]
![](http://thumb.zyjl.cn/pic3/upload/images/201202/31/5917150a.png)
| ||
4 |
(1)求:点P到棱BC的距离;
(2)问:在侧棱CC1上是否存在点N,使得异面直线AB1与MN所成角为45°?若存在,请说明点N的位置;若不存在,请说明理由;
(3)定义:如果平面α经过线段AA′的中点,并与线段AA′垂直,则称点A关于平面α的对称点为点A′.设点A关于平面PBC的对称点为A′,求:点A′到平面AMC1的距离.
如图,已知三棱柱的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论取何值,总有
;
(Ⅱ)当取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.
查看习题详情和答案>>
如图,已知三棱柱的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论取何值,总有
;
(Ⅱ)当取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.