摘要:(Ⅱ)由正弦定理得.
网址:http://m.1010jiajiao.com/timu_id_262518[举报]
点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且满足
•
=0,
=-
(1)当点P在y轴上移动时,求点M的轨迹C的方程
(2)过定点D(m,0)(m>0)做直线l交轨迹C于A、B两点,E是D关于坐标原点的对称点,求证:∠AED=∠BED.
(3)在(2)中,是否存在垂直于x轴的直线被以AD为直径的圆截得的弦长恒为定值?若存在,求出直线的方程,若不存在,说明理由. 查看习题详情和答案>>
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
(1)当点P在y轴上移动时,求点M的轨迹C的方程
(2)过定点D(m,0)(m>0)做直线l交轨迹C于A、B两点,E是D关于坐标原点的对称点,求证:∠AED=∠BED.
(3)在(2)中,是否存在垂直于x轴的直线被以AD为直径的圆截得的弦长恒为定值?若存在,求出直线的方程,若不存在,说明理由. 查看习题详情和答案>>
点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且满足
(1)当点P在y轴上移动时,求点M的轨迹C的方程
(2)过定点D(m,0)(m>0)做直线l交轨迹C于A、B两点,E是D关于坐标原点的对称点,求证:∠AED=∠BED.
(3)在(2)中,是否存在垂直于x轴的直线被以AD为直径的圆截得的弦长恒为定值?若存在,求出直线的方程,若不存在,说明理由.
查看习题详情和答案>>
(1)当点P在y轴上移动时,求点M的轨迹C的方程
(2)过定点D(m,0)(m>0)做直线l交轨迹C于A、B两点,E是D关于坐标原点的对称点,求证:∠AED=∠BED.
(3)在(2)中,是否存在垂直于x轴的直线被以AD为直径的圆截得的弦长恒为定值?若存在,求出直线的方程,若不存在,说明理由.
查看习题详情和答案>>
已知抛物线C:y2=4x.
(1)设圆M过点T(2,0),且圆心M在抛物线C上,PQ是圆M在y轴上截得的弦,当点M在抛物线上运动时,弦长|PQ|是否为定值?说明理由;
(2)过点D(-1,0)的直线与抛物线C交于不同的两点A、B,在x轴上是否存在一点E,使△ABE为正三角形?若存在,求出E点坐标;若不存在,说明理由.

查看习题详情和答案>>
(1)设圆M过点T(2,0),且圆心M在抛物线C上,PQ是圆M在y轴上截得的弦,当点M在抛物线上运动时,弦长|PQ|是否为定值?说明理由;
(2)过点D(-1,0)的直线与抛物线C交于不同的两点A、B,在x轴上是否存在一点E,使△ABE为正三角形?若存在,求出E点坐标;若不存在,说明理由.