摘要:根据一元二次方程根的分布有解得0<t≤.因此.实数t的取值范围是0<t≤.[法二]:要使方程+t=x在[1.+∞]内有两个不等实根.即使方程=x-t在[1.+∞]内有两个不等实根.如图.当直线y=x-t经过点(1.0)时.t=.当直线y=x-t与曲线y=相切时.
网址:http://m.1010jiajiao.com/timu_id_24521[举报]
已知a,b,c∈R,且三次方程f(x)=x3-ax2+bx-c=0有三个实根x1,x2,x3.
(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β处取得极值且-1<α<0<β<1,试求此方程三个根两两不等时c的取值范围.
查看习题详情和答案>>
(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β处取得极值且-1<α<0<β<1,试求此方程三个根两两不等时c的取值范围.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|====.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
查看习题详情和答案>>