摘要:∴S△CMN=CM?NF=.S△CMB=BM?CM=2.设点B到平面CMN的距离为h.
网址:http://m.1010jiajiao.com/timu_id_20341[举报]
规定Cmx=
,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.
(1)求C3-15的值;
(2)设x>0,当x为何值时,
取得最小值?
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1.
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax0=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间. 查看习题详情和答案>>
x(x-1)…(x-m+1) |
m! |
(1)求C3-15的值;
(2)设x>0,当x为何值时,
| ||
|
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1.
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax0=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间. 查看习题详情和答案>>
规定
=
,其中x∈R,m是正整数,且
=1,这是组合数
(n、m是正整数,且m≤n)的一种推广.
(1)求
的值;
(2)设x>0,当x为何值时,
取得最小值?
(3)组合数的两个性质;①
=
;②
+
=
.是否都能推广到
(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
查看习题详情和答案>>
C | m x |
x(x-1)…(x-m+1) |
m! |
C | 0 x |
C | m n |
(1)求
C | 3 -15 |
(2)设x>0,当x为何值时,
| ||
(
|
(3)组合数的两个性质;①
C | m n |
C | n-m n |
C | m n |
C | m-1 n |
C | m n+1 |
C | m x |