摘要:3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有的基本事件只有有限个,②每个基本事件的发生都是等可能的,
网址:http://m.1010jiajiao.com/timu_id_197546[举报]
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
|
爱看课外书 |
不爱看课外书 |
总计 |
作文水平好 |
|
|
|
作文水平一般 |
|
|
|
总计 |
|
|
|
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中.
参考数据:
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
【解析】本试题主要考查了古典概型和列联表中独立性检验的运用。结合公式为判定两个分类变量的相关性,
第二问中,确定
结合互斥事件的概率求解得到。
解:因为2×2列联表如下
|
爱看课外书 |
不爱看课外书 |
总计 |
作文水平好 |
18 |
6 |
24 |
作文水平一般 |
7 |
19 |
26 |
总计 |
25 |
25 |
50 |
查看习题详情和答案>>
给出下列命题:①掷两枚硬币,可出现“两个正面”、“两个反面”、“一正一反”三种等可能结果
②某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性不相等;
③分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同;
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.
其中所有错误命题的序号为
查看习题详情和答案>>
②某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性不相等;
③分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同;
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.
其中所有错误命题的序号为
①③④
①③④
.