摘要:证明:设.. 由对数的定义可得 ..
网址:http://m.1010jiajiao.com/timu_id_194413[举报]
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”
(1)判断函数是否是集合M中的元素,并说明理由;
(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;
(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.
查看习题详情和答案>>设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)﹣x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.
试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.
查看习题详情和答案>>
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.
试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)﹣x=0有实数根;②函数
f(x)的导数f'(x)满足0<f'(x)<1.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.
查看习题详情和答案>>
f(x)的导数f'(x)满足0<f'(x)<1.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.