摘要:通过探究.思考.培养学生理性思维能力.观察能力以及判断能力.
网址:http://m.1010jiajiao.com/timu_id_194401[举报]
已知数集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj与
两数中至少有一个属于A.
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)求a1的值;当n=3时,数列a1,a2,a3是否成等比数列,试说明理由;
(3)由(2)及通过对A的探究,试写出关于数列a1,a2,…,an的一个真命题,并加以证明. 查看习题详情和答案>>
aj | ai |
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)求a1的值;当n=3时,数列a1,a2,a3是否成等比数列,试说明理由;
(3)由(2)及通过对A的探究,试写出关于数列a1,a2,…,an的一个真命题,并加以证明. 查看习题详情和答案>>
已知函数f(x)=
(a为非零常数),定义:f1(x)=f(x),fk+1(x)=f[fk(x)],k∈N*,例如:f2(x)=f[f(x)],f3(x)=f[f2(x)],…
(1)当a=2时,求f2(1),f3(-
)的值;
(2)若对于任意x≠-1,等式f2(x)=x恒成立,求a的值;
(3)当a确定后,fk(x),k∈N*的值都由x的值确定.当a=2时,试通过对fk(x)的探究,写出一个使得集合{fk(x)}为有限集的真命题(不必证明).
查看习题详情和答案>>
ax |
x+1 |
(1)当a=2时,求f2(1),f3(-
1 |
7 |
(2)若对于任意x≠-1,等式f2(x)=x恒成立,求a的值;
(3)当a确定后,fk(x),k∈N*的值都由x的值确定.当a=2时,试通过对fk(x)的探究,写出一个使得集合{fk(x)}为有限集的真命题(不必证明).
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中值y随x值变化的特点,完成以下的问题.
函数f(x)=x+
(x>0)在区间(0,2)上递减;
函数f(x)=x+
(x>0)在区间
当x=
证明:函数f(x)=x+
(x>0)在区间(0,2)递减.
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
(x<0)有没有最值?如果有,请说明是最大值还是最小值,以及取相应最值时x的值.
(2)函数f(x)=ax+
,(a<0,b<0)在区间
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
函数f(x)=x+
4 |
x |
函数f(x)=x+
4 |
x |
(2,0)
(2,0)
上递增.当x=
2
2
时,y最小=4
4
.证明:函数f(x)=x+
4 |
x |
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
4 |
x |
(2)函数f(x)=ax+
b |
x |
[-
,0)
|
[-
,0)
和
|
(0,
]
|
(0,
]
上单调递增.
|
通过实验知道如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过时间t分钟后,物体温度θ将满足:θ=θ0+(θ1-θ0)•2-kt
,其中k为正常数.
已知一杯开水(100℃)在室温为20℃的环境下经过30分钟后温度会降至30℃.
(1)若当前室温为16℃,从冰柜中拿出的温度为-4℃的冰块,经过5分钟之后,能否融化?(即温度达到0℃以上,参考数据:
≈1.414)
(2)在室温为-4℃的环境下,12℃的水经过多长时间可以结冰?-20℃的冰能否融化?(即变为0℃,请依据本题的原理解释)
(3)探究:同样多的一杯开水和一杯冷水一同放进冰箱,哪个先结冰?请猜想答案,有条件的在考后抽空做实验并上网查阅相关资料.
查看习题详情和答案>>
,其中k为正常数.
已知一杯开水(100℃)在室温为20℃的环境下经过30分钟后温度会降至30℃.
(1)若当前室温为16℃,从冰柜中拿出的温度为-4℃的冰块,经过5分钟之后,能否融化?(即温度达到0℃以上,参考数据:
2 |
(2)在室温为-4℃的环境下,12℃的水经过多长时间可以结冰?-20℃的冰能否融化?(即变为0℃,请依据本题的原理解释)
(3)探究:同样多的一杯开水和一杯冷水一同放进冰箱,哪个先结冰?请猜想答案,有条件的在考后抽空做实验并上网查阅相关资料.