题目内容
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中值y随x值变化的特点,完成以下的问题.
函数f(x)=x+
(x>0)在区间(0,2)上递减;
函数f(x)=x+
(x>0)在区间
当x=
证明:函数f(x)=x+
(x>0)在区间(0,2)递减.
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
(x<0)有没有最值?如果有,请说明是最大值还是最小值,以及取相应最值时x的值.
(2)函数f(x)=ax+
,(a<0,b<0)在区间
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
函数f(x)=x+
4 |
x |
函数f(x)=x+
4 |
x |
(2,0)
(2,0)
上递增.当x=
2
2
时,y最小=4
4
.证明:函数f(x)=x+
4 |
x |
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
4 |
x |
(2)函数f(x)=ax+
b |
x |
[-
,0)
|
[-
,0)
和
|
(0,
]
|
(0,
]
上单调递增.
|
分析:根据表格给出的数据,通过考查x增大时,y的变化写出问题中的空格答案.并采用证明单调性的步骤:取值、作差、变形、定号、下结论证明函数f(x)=x+
(x>0)在区间(0,2)递减.
(1)根据奇函数图象对称性,得出f(x)=x+
(x<0)有最值,当x=-2时,ymax=-4,(2)由特殊到一般的推理过程,得出f(x)=ax+
,(a<0,b<0)在区间 )[-
,0)和(0,
]上单调递增.
4 |
x |
(1)根据奇函数图象对称性,得出f(x)=x+
4 |
x |
b |
x |
|
|
解答:解:(1)函数f(x)=x+
(x>0)在区间 (2,+∞)上递增.(2分)
当x=2 时,y最小=4.(4分)
下面证明:函数f(x)=x+
(x>0)在区间(0,2)递减.
证明:设x1,x2是区间,(0,2)上的任意两个数,且x1<x2.…(5分)
f(x1)-f(x2)=x1+
-(x2+
)=x1-x2+
-
=(x1-x2)(1-
)=
.(7分)
∵x1<x2,∴x1-x2<0
又∵x1,x2∈(0,2),
∴0<x1x2<4,…(8分)
∴x1x2-4<0,f(x1)-f(x2)>0
∴函数在(0,2)上为减函数.(9分)
答:(1)f(x)=x+
(x<0)有最值,当x=-2时,ymax=-4.(11分)
(2)[-
,0)和(0,
]单调递增.(14分)
4 |
x |
当x=2 时,y最小=4.(4分)
下面证明:函数f(x)=x+
4 |
x |
证明:设x1,x2是区间,(0,2)上的任意两个数,且x1<x2.…(5分)
f(x1)-f(x2)=x1+
4 |
x1 |
4 |
x2 |
4 |
x1 |
4 |
x2 |
4 |
x1x2 |
(x1-x2)(x1x2-4) |
x1x2 |
∵x1<x2,∴x1-x2<0
又∵x1,x2∈(0,2),
∴0<x1x2<4,…(8分)
∴x1x2-4<0,f(x1)-f(x2)>0
∴函数在(0,2)上为减函数.(9分)
答:(1)f(x)=x+
4 |
x |
(2)[-
|
|
点评:本题考查函数单调性的定义、证明.奇函数的性质,是单调性与奇偶性的结合,考查归纳推理、类比、论证能力.
练习册系列答案
相关题目
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间(0,2)上递减,函数f(x)=x+
(x>0)在区间 上递增;
(2)函数f(x)=x+
(x>0),当x= 时,y最小= ;
(3)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+
4 |
x |
4 |
x |
(2)函数f(x)=x+
4 |
x |
(3)函数f(x)=x+
4 |
x |
探究函数f(x)=x+
x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
(1)若当x>0时,函数f(x)=x+
时,在区间(0,2)上递减,则在 上递增;
(2)当x= 时,f(x)=x+
,x>0的最小值为 ;
(3)试用定义证明f(x)=x+
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
4 |
x |
(2)当x=
4 |
x |
(3)试用定义证明f(x)=x+
4 |
x |
(4)函数f(x)=x+
4 |
x |
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.