网址:http://m.1010jiajiao.com/timu_id_192970[举报]
(07年山东卷理)(14分)设函数,其中.
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数,不等式都成立.
(04年天津卷理)(12分)
已知定义在R上的函数和数列满足下列条件:
,
其中为常数,为非零常数。
(I)令,证明数列是等比数列;
(II)求数列的通项公式;
(III)当时,求
(本题满分14分)
已知为三点所在直线外一点,且.数列,满足,,且().(Ⅰ) 求;(Ⅱ) 令,求数列的通项公式;(III) 当时,求数列的通项公式.
(本小题满分14分)已知函数.(I) 若且函数为奇函数,求实数;(II) 若试判断函数的单调性;(III) 当,,时,求函数的对称轴或对称中心.
(本小题满分12分)
已知函数f(x)=x-ln(x+a).(a是常数)
(I)求函数f(x)的单调区间;
(II) 当在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,求实数b的取值范围;
(III)求证:当时.