网址:http://m.1010jiajiao.com/timu_id_192730[举报]
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下:
年份() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
人数() |
3 |
5 |
8 |
11 |
13 |
14 |
17 |
22 |
30 |
31 |
(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率;
(2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。
【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-= (4’)
(2)由已知数据得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)
则=, (9’)
则回归直线方程为y=2.6x+0.2 (10’)
则第8年的估计值和真实值之间的差的绝对值为
查看习题详情和答案>>
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
查看习题详情和答案>>
在△中,∠,∠,∠的对边分别是,且 .
(1)求∠的大小;(2)若,,求和的值.
【解析】第一问利用余弦定理得到
第二问
(2) 由条件可得
将 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
查看习题详情和答案>>
C | n 2n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | n n |
C | 1 n |
C | n-1 n |
C | 2 n |
C | n-2 n |
C | n n |
C | 0 n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | n 2n |
利用上述方法,化简(
C | 0 2n |
C | 1 2n |
C | 2 2n |
C | 3 2n |
C | 2n 2n |
C | n 2n |
C | n 2n |