题目内容
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下:
年份() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
人数() |
3 |
5 |
8 |
11 |
13 |
14 |
17 |
22 |
30 |
31 |
(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率;
(2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。
【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-= (4’)
(2)由已知数据得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)
则=, (9’)
则回归直线方程为y=2.6x+0.2 (10’)
则第8年的估计值和真实值之间的差的绝对值为
【答案】
(1)
(2)则第8年的估计值和真实值之间的差的绝对值为
练习册系列答案
相关题目