摘要:可知函数有两个极值点.
网址:http://m.1010jiajiao.com/timu_id_192659[举报]
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围. 查看习题详情和答案>>
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围. 查看习题详情和答案>>
已知函数f(x)=aln(1+ex)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),且g(x)在x=1处取得极值.
(Ⅰ)求实数a的值;
(Ⅱ)证明:对(-∞,+∞)上任意两个互异的实数x,y,都有f(
)<
;
(Ⅲ)已知△ABC的三个顶点A,B,C都在函数y=f(x)的图象上,且横坐标依次成等差数列,求证△ABC是钝角三角形.并问它可能是等腰三角形吗?说明理由.
查看习题详情和答案>>
(Ⅰ)求实数a的值;
(Ⅱ)证明:对(-∞,+∞)上任意两个互异的实数x,y,都有f(
x+y |
2 |
f(x)+f(y) |
2 |
(Ⅲ)已知△ABC的三个顶点A,B,C都在函数y=f(x)的图象上,且横坐标依次成等差数列,求证△ABC是钝角三角形.并问它可能是等腰三角形吗?说明理由.
已知函数f(x)=x3+mx2+nx有两个不同的极值点α,β,设f(x)在点(-1,f(-1))处的切线为l1,其斜率为k1;在点(1,f(1))处的切线为l2,其斜率为k2
(1)若m=1,n=-1,当t∈(-1,1)时,求函数f(x)在x∈[t,1]上的最小值;
(2)若k1=-
,|α-β|=
,求m,n;
(3)若α,β∈(-1,1),求k1•k2可能取到的最大整数值.
查看习题详情和答案>>
(1)若m=1,n=-1,当t∈(-1,1)时,求函数f(x)在x∈[t,1]上的最小值;
(2)若k1=-
1 |
2 |
| ||
3 |
(3)若α,β∈(-1,1),求k1•k2可能取到的最大整数值.