摘要:(2)点从左到右依次是函数图象上三点.其中求证:ㄓ是钝角三角形.
网址:http://m.1010jiajiao.com/timu_id_192314[举报]
已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3.
(Ⅰ)证明:函数f(x)在(-∞,+∞)上是减函数;
(Ⅱ)求证:△ABC是钝角三角形;
(Ⅲ)试问△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由. 查看习题详情和答案>>
(Ⅰ)证明:函数f(x)在(-∞,+∞)上是减函数;
(Ⅱ)求证:△ABC是钝角三角形;
(Ⅲ)试问△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由. 查看习题详情和答案>>
已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,f(x1),,B(x2•f(x2))C(x3,f(x3))从左到右依次是函数y=f(x)图象上的不同点,且x1,x2,x3成等差数列.
(1)证明:函数f(x)在R上是单调递减函数;
(2)证明:△ABC为钝角三角形;
(3)请问△ABC能否成为等腰三角形?若能,求△ABC面积的最大值;若不能,说明理由. 查看习题详情和答案>>
(1)证明:函数f(x)在R上是单调递减函数;
(2)证明:△ABC为钝角三角形;
(3)请问△ABC能否成为等腰三角形?若能,求△ABC面积的最大值;若不能,说明理由. 查看习题详情和答案>>
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N*)有且仅有两个不动点0、2,且f(-2)<-
.
(1)试求函数f(x)的单调区间;
(2)点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,其中1<xi<2(i=1,2,3),求证:△ABC是钝角三角形. 查看习题详情和答案>>
x2+a |
bx-c |
1 |
2 |
(1)试求函数f(x)的单调区间;
(2)点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,其中1<xi<2(i=1,2,3),求证:△ABC是钝角三角形. 查看习题详情和答案>>