ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=aln£¨1+ex£©-£¨a+1£©x£®
£¨1£©ÒÑÖªf£¨x£©Âú×ãÏÂÃæÁ½¸öÌõ¼þ£¬ÇóaµÄÈ¡Öµ·¶Î§£®
¢ÙÔÚ£¨-¡Þ£¬1]ÉÏ´æÔÚ¼«Öµ£¬
¢Ú¶ÔÓÚÈÎÒâµÄ¦È¡ÊR£¬c¡ÊRÖ±Ïßl£ºxsin¦È+2y+c=0¶¼²»ÊǺ¯Êýy=f£¨x£©£¨x¡Ê£¨-1£¬+¡Þ£©£©Í¼ÏóµÄÇÐÏߣ»
£¨2£©ÈôµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©´Ó×óµ½ÓÒÒÀ´ÎÊǺ¯Êýy=f£¨x£©Í¼ÏóÉÏÈýµã£¬ÇÒ2x2=x1+x3£¬µ±a£¾0ʱ£¬¡÷ABCÄÜ·ñÊǵÈÑüÈý½ÇÐΣ¿ÈôÄÜ£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÒÑÖªf£¨x£©Âú×ãÏÂÃæÁ½¸öÌõ¼þ£¬ÇóaµÄÈ¡Öµ·¶Î§£®
¢ÙÔÚ£¨-¡Þ£¬1]ÉÏ´æÔÚ¼«Öµ£¬
¢Ú¶ÔÓÚÈÎÒâµÄ¦È¡ÊR£¬c¡ÊRÖ±Ïßl£ºxsin¦È+2y+c=0¶¼²»ÊǺ¯Êýy=f£¨x£©£¨x¡Ê£¨-1£¬+¡Þ£©£©Í¼ÏóµÄÇÐÏߣ»
£¨2£©ÈôµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©´Ó×óµ½ÓÒÒÀ´ÎÊǺ¯Êýy=f£¨x£©Í¼ÏóÉÏÈýµã£¬ÇÒ2x2=x1+x3£¬µ±a£¾0ʱ£¬¡÷ABCÄÜ·ñÊǵÈÑüÈý½ÇÐΣ¿ÈôÄÜ£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ê×ÏÈÇó³öf£¨x£©µÄµ¼Êý£ºf'£¨x£©=-
£¬½ÓÏÂÀ´¿¼ÂÇÌõ¼þ¢Ù£º£¨i£©µ±a¡Ý-1ʱ£¬¿ÉµÃf'£¨x£©£¼0£¬f£¨x£©ÔÚRÉϵ¥µ÷¼õ£¬ÓëÌâÒâ²»·û£»£¨ii£©µ±a£¼-1ʱ£¬¿ÉµÃf'£¨x£©¡Ü0µÄ½â¼¯Îª{x|x¡Ýln£¨-a-1£©}£¬ÌÖÂÛf'£¨x£©µÄ·ûºÅ£¬µÃµ½x0=ln£¨-a-1£©ÊÇf£¨x£©µÄ¼«´óÖµµã£¬½áºÏÌâÒâµÃln£¨-a-1£©£¼1£¬ËùÒÔa¡Ê£¨-1-e£¬-1£©£®ÔÙ¿¼ÂÇÌõ¼þ¢Ú£ºÕÒ³öµ±a¡Ê£¨-e-1£¬-1£©Ê±£¬Âú×ãÌõ¼þ¢ÚµÄaµÄÈ¡Öµ·¶Î§£¬Í¨¹ýÌÖÂÛf¡ä£¨x£©µÄµ¼Êý£¬µÃµ½f¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¶øf'£¨1£©=-1-
£¬f¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÏÞµÄÇ÷½üÓÚ-1£¬¿ÉµÃf'£¨x£©¡Ê£¨-1£¬-1-
£©£®×îºó¸ù¾ÝÖ±Ïß l µÄбÂÊk=-
sin¦È¡Ü-
ÇÒÖ±Ïß l ²»ÊǺ¯Êýf£¨x£©Í¼ÏóµÄÇÐÏߣ¬µÃµ½-1-
¡Ü-
ÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´-2a-1¡Üex£¬Óɴ˿ɵÃa¡Ý-
£®×îºó×ÛÉÏËùÊö¿ÉµÃaµÄÈ¡Öµ·¶Î§ÊÇ[-
£¬-1£©£®
£¨2£©¸ù¾ÝA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬²»·ÁÉèx1£¼x2£¼x3£¬ÓÉ£¨1£©µÄÌÖÂÛµÃf£¨x£©ÔÚRÉϵ¥µ÷¼õ£¬f£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬ÇÒx2=
£¬ÓÉ´Ë¿ÉÓ÷´Ö¤·¨Ö¤Ã÷A£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©Èýµã²»¹²Ïߣ®½ÓÏÂÀ´ÓÃÊýÁ¿»ýµÄ×ø±êÔËË㣬½áºÏº¯Êý±í´ïʽ֤³ö
•
£¼0£¬¿ÉµÃ¡÷ABCÊÇÖÐBΪ¶Û½Ç£®Èô¡÷ABCÄÜÊǵÈÑüÈý½ÇÐΣ¬Ö»ÄÜÊÇ|
|=|
|£¬´úÈëËùÉèµÄÊý¾Ý£¬²¢ÇÒ»¯¼òÕûÀí£¬¿ÉµÃe2x2=ex1+ex3£¬×îºóÓûù±¾²»µÈʽµÃµ½ ex1=ex3£¬Óëx1£¼x3ì¶Ü£¬Òò´Ë¿ÉµÃ¡÷ABC²»¿ÉÄÜΪµÈÑüÈý½ÇÐΣ®
a+1+ex |
1+ex |
a |
1+e |
a |
1+e |
1 |
2 |
1 |
2 |
a |
1+ex |
1 |
2 |
1+e |
2 |
1+e |
2 |
£¨2£©¸ù¾ÝA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬²»·ÁÉèx1£¼x2£¼x3£¬ÓÉ£¨1£©µÄÌÖÂÛµÃf£¨x£©ÔÚRÉϵ¥µ÷¼õ£¬f£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬ÇÒx2=
x1+x3 |
2 |
BA |
BC |
BA |
BC |
½â´ð£º½â£º£¨1£©f'£¨x£©=a•
-a-1=-
£¬½ÓÏÂÀ´·ÖÁ½²½£º
¢å¡¢ÏÈ¿¼ÂÇÌõ¼þ¢Ù£º
£¨i£©µ±a+1¡Ý0ʱ£¬¼´a¡Ý-1ʱ£¬¿ÉµÃf'£¨x£©£¼0ÔÚRÉϺã³ÉÁ¢£¬¹Êf£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬ÓëÌâÒâ²»·û£®
£¨ii£©µ±a+1£¼0ʱ£¬¼´a£¼-1ʱ£¬¿ÉµÃf'£¨x£©¡Ü0µÄ½â¼¯Îª{x|x¡Ýln£¨-a-1£©}£¬
´Ëʱf£¨x£©ÔÚ£¨ln£¨-a-1£©£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨-¡Þ£¬ln£¨-a-1£©£©Éϵ¥µ÷µÝÔö£¬
´Ó¶øx0=ln£¨-a-1£©ÊÇf£¨x£©µÄ¼«´óÖµµã£¬½áºÏÌâÒâµÃln£¨-a-1£©£¼1£¬a£¾-1-e£¬ËùÒÔa¡Ê£¨-1-e£¬-1£©£®
¢æ¡¢ÏÂÃæÕÒ³öµ±a¡Ê£¨-e-1£¬-1£©Ê±£¬Âú×ãÌõ¼þ¢ÚµÄaµÄÈ¡Öµ·¶Î§£®
ÓÖ¡ßf'£¨x£©=-
=-1-
£¬
Éèg£¨x£©=-1-
£¬Ôòg'£¨x£©=
£¼0ºã³ÉÁ¢£¬
ËùÒÔf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¶øf'£¨1£©=-1-
£¬
½áºÏf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÁ¬Ðø£¬µ±xÎÞÏÞµÄÇ÷½üÓÚ+¡Þʱ£¬f¡ä£¨x£©ÎÞÏÞµÄÇ÷½üÓÚ-1£¬
¿ÉµÃf'£¨x£©¡Ê£¨-1£¬-1-
£©£®
Ö±Ïß l µÄбÂÊk=-
sin¦È£¬Ôò |k|¡Ü
£®
¡ßÖ±Ïß l ²»ÊǺ¯Êýf£¨x£©Í¼ÏóµÄÇÐÏߣ¬
¡à-1-
¡Ü-
ÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´-2a-1¡ÜexÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
Óɴ˿ɵÃ-2a-1¡Üe£¬¼´a¡Ý-
£®
×ÛÉÏËùÊö£¬aµÄÈ¡Öµ·¶Î§ÊÇ[-
£¬-1£©£®
£¨2£©ÓÉ£¨1£©Öª£¬a£¾0ʱ£¬f£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
¡ßA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬
¡à²»·ÁÉèx1£¼x2£¼x3£¬¿ÉµÃf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬x2=
£¬
ÏÂÃæÓ÷´Ö¤·¨ËµÃ÷A£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©Èýµã²»¹²Ïߣº
ÈôA¡¢B¡¢CÈýµã¹²Ïߣ¬ÔòÓÐf£¨x2£©=
£¨f£¨x1£©+f£¨x3£©£©
ËùÒÔ 2ex2=ex1+ex3¡Ý2
£¬µÃx1=x3Óëx1£¼x2£¼x3ì¶Ü£®
½ÓÏÂÀ´ËµÃ÷½ÇBÊǶ۽ǣº
=£¨x1-x2£¬f£¨x1£©-f£¨x2£©£©£¬
=£¨x3-x2£¬f£¨x3£©-f£¨x2£©£©
¡à
•
=£¨x1-x2£©£¨x3-x2£©+[f£¨x1£©-f£¨x2£©][f£¨x3£©-f£¨x2£©]
¡ßx1-x2£¼0£¬x3-x2£¾0£¬f£¨x1£©-f£¨x2£©£¾0£¬f£¨x3£©-f£¨x2£©£¼0£¬
¡à
•
£¼0£¬¿ÉµÃ¡ÏB¡Ê£¨
£¬¦Ð£©£¬¼´¡÷ABCÊÇÖÐBΪ¶Û½Ç£®
¼ÙÉè¡÷ABCΪµÈÑüÈý½ÇÐΣ¬Ö»ÄÜÊÇ |
|=|
|
¼´£º£¨x1-x2£©2+[f£¨x1£©-f£¨x2£©]2=£¨x3-x2£©2+[f£¨x3£©-f£¨x2£©]2
¡ßx2-x1=x3-x2£¬¡à[f£¨x1£©-f£¨x2£©]2=[f£¨x3£©-f£¨x2£©]2
½áºÏf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬»¯¼òµÃ2f£¨x2£©=f£¨x1£©+f£¨x3£©£¬
Ò²¾ÍÊÇ2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-£¨a+1£©£¨x1+x3£©
½«2x2=x1+x3´úÈë¼´µÃ£º2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-2£¨a+1£©x2£¬
¡à2ln£¨1+ex2£©=ln£¨1+ex1£©£¨1+ex3£©?£¨1+ex2£©2=£¨1+ex1£©£¨1+ex3£©£¬
¿ÉµÃe2x2+2ex2=ex1+x3+ex1+ex3?e2x2=ex1+ex3¢Ù
¶øÊÂʵÉÏ£¬Èô¢Ù³ÉÁ¢£¬¸ù¾Ýex1+ex3¡Ý2
=2ex2£¬
±ØÈ»µÃµ½ ex1=ex3£¬Óëx1£¼x3ì¶Ü£®
ËùÒÔ¡÷ABC²»¿ÉÄÜΪµÈÑüÈý½ÇÐΣ®
ex |
1+ex |
a+1+ex |
1+ex |
¢å¡¢ÏÈ¿¼ÂÇÌõ¼þ¢Ù£º
£¨i£©µ±a+1¡Ý0ʱ£¬¼´a¡Ý-1ʱ£¬¿ÉµÃf'£¨x£©£¼0ÔÚRÉϺã³ÉÁ¢£¬¹Êf£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬ÓëÌâÒâ²»·û£®
£¨ii£©µ±a+1£¼0ʱ£¬¼´a£¼-1ʱ£¬¿ÉµÃf'£¨x£©¡Ü0µÄ½â¼¯Îª{x|x¡Ýln£¨-a-1£©}£¬
´Ëʱf£¨x£©ÔÚ£¨ln£¨-a-1£©£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨-¡Þ£¬ln£¨-a-1£©£©Éϵ¥µ÷µÝÔö£¬
´Ó¶øx0=ln£¨-a-1£©ÊÇf£¨x£©µÄ¼«´óÖµµã£¬½áºÏÌâÒâµÃln£¨-a-1£©£¼1£¬a£¾-1-e£¬ËùÒÔa¡Ê£¨-1-e£¬-1£©£®
¢æ¡¢ÏÂÃæÕÒ³öµ±a¡Ê£¨-e-1£¬-1£©Ê±£¬Âú×ãÌõ¼þ¢ÚµÄaµÄÈ¡Öµ·¶Î§£®
ÓÖ¡ßf'£¨x£©=-
a+1+ex |
1+ex |
a |
1+ex |
Éèg£¨x£©=-1-
a |
1+ex |
aex |
(1+ex)2 |
ËùÒÔf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¶øf'£¨1£©=-1-
a |
1+e |
½áºÏf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÁ¬Ðø£¬µ±xÎÞÏÞµÄÇ÷½üÓÚ+¡Þʱ£¬f¡ä£¨x£©ÎÞÏÞµÄÇ÷½üÓÚ-1£¬
¿ÉµÃf'£¨x£©¡Ê£¨-1£¬-1-
a |
1+e |
Ö±Ïß l µÄбÂÊk=-
1 |
2 |
1 |
2 |
¡ßÖ±Ïß l ²»ÊǺ¯Êýf£¨x£©Í¼ÏóµÄÇÐÏߣ¬
¡à-1-
a |
1+ex |
1 |
2 |
Óɴ˿ɵÃ-2a-1¡Üe£¬¼´a¡Ý-
1+e |
2 |
×ÛÉÏËùÊö£¬aµÄÈ¡Öµ·¶Î§ÊÇ[-
1+e |
2 |
£¨2£©ÓÉ£¨1£©Öª£¬a£¾0ʱ£¬f£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
¡ßA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬
¡à²»·ÁÉèx1£¼x2£¼x3£¬¿ÉµÃf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬x2=
x1+x3 |
2 |
ÏÂÃæÓ÷´Ö¤·¨ËµÃ÷A£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©Èýµã²»¹²Ïߣº
ÈôA¡¢B¡¢CÈýµã¹²Ïߣ¬ÔòÓÐf£¨x2£©=
1 |
2 |
ËùÒÔ 2ex2=ex1+ex3¡Ý2
ex1•ex3 |
½ÓÏÂÀ´ËµÃ÷½ÇBÊǶ۽ǣº
BA |
BC |
¡à
BA |
BC |
¡ßx1-x2£¼0£¬x3-x2£¾0£¬f£¨x1£©-f£¨x2£©£¾0£¬f£¨x3£©-f£¨x2£©£¼0£¬
¡à
BA |
BC |
¦Ð |
2 |
¼ÙÉè¡÷ABCΪµÈÑüÈý½ÇÐΣ¬Ö»ÄÜÊÇ |
BA |
BC |
¼´£º£¨x1-x2£©2+[f£¨x1£©-f£¨x2£©]2=£¨x3-x2£©2+[f£¨x3£©-f£¨x2£©]2
¡ßx2-x1=x3-x2£¬¡à[f£¨x1£©-f£¨x2£©]2=[f£¨x3£©-f£¨x2£©]2
½áºÏf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬»¯¼òµÃ2f£¨x2£©=f£¨x1£©+f£¨x3£©£¬
Ò²¾ÍÊÇ2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-£¨a+1£©£¨x1+x3£©
½«2x2=x1+x3´úÈë¼´µÃ£º2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-2£¨a+1£©x2£¬
¡à2ln£¨1+ex2£©=ln£¨1+ex1£©£¨1+ex3£©?£¨1+ex2£©2=£¨1+ex1£©£¨1+ex3£©£¬
¿ÉµÃe2x2+2ex2=ex1+x3+ex1+ex3?e2x2=ex1+ex3¢Ù
¶øÊÂʵÉÏ£¬Èô¢Ù³ÉÁ¢£¬¸ù¾Ýex1+ex3¡Ý2
ex1•ex3 |
±ØÈ»µÃµ½ ex1=ex3£¬Óëx1£¼x3ì¶Ü£®
ËùÒÔ¡÷ABC²»¿ÉÄÜΪµÈÑüÈý½ÇÐΣ®
µãÆÀ£º±¾Ìâ×ÛºÏÁËÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì¡¢º¯ÊýÔÚijµãÈ¡µÃ¼«ÖµµÄÌõ¼þºÍÖ±½Ç×ø±êϵÖÐÅжÏÈý½ÇÐεÄÐÎ×´µÈ֪ʶµã£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿