摘要:又因为上只有一个极值.故也是最值.答:该商品售价定为每件30元时.所获利润最大为23000元.--------12分
网址:http://m.1010jiajiao.com/timu_id_191918[举报]
已知函数f(x)=
ax2-2x-2+lnx,a∈R.
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围;
(3)对于任意x1,x2∈(0,1],都有|x1-x2|≤f(x1)-f(x2)|,求实数a的取值范围.
查看习题详情和答案>>
1 | 2 |
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围;
(3)对于任意x1,x2∈(0,1],都有|x1-x2|≤f(x1)-f(x2)|,求实数a的取值范围.
已知函数f(x)=ax2-2x-2+lnx,a∈R.
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围;
(3)对于任意x1,x2∈(0,1],都有|x1-x2|≤f(x1)-f(x2)|,求实数a的取值范围.
查看习题详情和答案>>
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围;
(3)对于任意x1,x2∈(0,1],都有|x1-x2|≤f(x1)-f(x2)|,求实数a的取值范围.
查看习题详情和答案>>
已知函数f(x)=
+lnx,g(x)=
bx2-2x+2,a,b∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.
查看习题详情和答案>>
a |
x |
1 |
2 |
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.