网址:http://m.1010jiajiao.com/timu_id_191916[举报]
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
查看习题详情和答案>>
投资A项目一年后获得的利润X1(万元)的概率分布列如下表所示:
X1 | 11 | 12 | 17 |
P | a | 0.4 | b |
投资B项目一年后获得的利润X2(万元)与B项目产品价格的调整有关,B项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p(0<p<1)和1-p.经专家测算评估:B项目产品价格一年内调整次数X(次)与X2的关系如下表所示:
X(次) | 0 | 1 | 2 |
X2(万元) | 4.12 | 11.76 | 20.40 |
(2)求X2的分布列;
(3)若E(X1)<E(X2),则选择投资B项目,求此时 p的取值范围.
投资A项目一年后获得的利润X1(万元)的概率分布列如下表所示:
X1 | 11 | 12 | 17 |
P | a | 0.4 | b |
投资B项目一年后获得的利润X2(万元)与B项目产品价格的调整有关,B项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p(0<p<1)和1-p.经专家测算评估:B项目产品价格一年内调整次数X(次)与X2的关系如下表所示:
X(次) | 1 | 2 | |
X2(万元) | 4.12 | 11.76 | 20.40 |
(2)求X2的分布列;
(3)若E(X1)<E(X2),则选择投资B项目,求此时 p的取值范围.
查看习题详情和答案>>
投资A项目一年后获得的利润X1(万元)的概率分布列如下表所示:
X1 | 11 | 12 | 17 |
P | a | 0.4 | b |
投资B项目一年后获得的利润X2(万元)与B项目产品价格的调整有关,B项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p(0<p<1)和1-p.经专家测算评估:B项目产品价格一年内调整次数X(次)与X2的关系如下表所示:
X(次) | 1 | 2 | |
X2(万元) | 4.12 | 11.76 | 20.40 |
(2)求X2的分布列;
(3)若E(X1)<E(X2),则选择投资B项目,求此时 p的取值范围.
查看习题详情和答案>>
(1)投资A项目一年后获得的利润X1(万元)的概率分布列如下表所示:
(2)投资B项目一年后获得的利润X2(万元)与B项目产品价格的调整有关, B项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p(0< p <1)和1-p,经专家测算评估:B项目产品价格一年内调整次数X(次)与X2的关系如下表所示:
(Ⅱ)求X2的分布列;
(Ⅲ)若E(X1)< E(X2),则选择投资B项目,求此时 p的取值范围