摘要:∴椭圆m: ----5分 ∵M(0.t)1°当k=0时.显然-2<t<2 ----6分
网址:http://m.1010jiajiao.com/timu_id_182888[举报]
已知圆C的圆心为C(m,0),m<3,半径为an,圆n与椭圆Sn:
+
=1(a>b>0)有一个公共点an(3,1),bn分别是椭圆的左、右焦点.
(1)求圆bn的标准方程;
(2)若点P的坐标为(4,4),试探究斜率为k的直线n与圆Tn能否相切,若能,求出椭圆m∈N*和直线PF1的方程;若不能,请说明理由. 查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
(1)求圆bn的标准方程;
(2)若点P的坐标为(4,4),试探究斜率为k的直线n与圆Tn能否相切,若能,求出椭圆m∈N*和直线PF1的方程;若不能,请说明理由. 查看习题详情和答案>>
(2013•温州一模)椭圆M:
+
=1(a>b>0)长轴上的两个顶点A、B,点P为椭圆M上除A、B外的一个动点,若
•
=0且
•
=0,则动点Q在下列哪种曲线上( )
x2 |
a2 |
y2 |
b2 |
QA |
PA |
QB |
PB |
查看习题详情和答案>>
(2013•大连一模)设离心率e=
的椭圆M:
+
=1(a>b>0)的左、右焦点分别为F1、F2,P是x轴正半轴上一点,以PF1为直径的圆经过椭圆M短轴端点,且该圆和直线x+
y+3=0相切,过点P的直线与椭圆M相交于相异两点A、C.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若相异两点A、B关于x轴对称,直线BC交x轴与点Q,求
•
的取值范围.
查看习题详情和答案>>
1 |
2 |
x2 |
a2 |
y2 |
b2 |
3 |
(Ⅰ)求椭圆M的方程;
(Ⅱ)若相异两点A、B关于x轴对称,直线BC交x轴与点Q,求
QA |
QC |
(2012•山东)如图,椭圆M:
+
=1(a>b>0)的离心率为
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
的最大值及取得最大值时m的值.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
| ||
2 |
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
|PQ| |
|ST| |
我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
+
=1的两个焦点,点F1、F2到直线L:
x-y+
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
+
=1(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).
查看习题详情和答案>>
(1)设F1、F2是椭圆M:
x2 |
25 |
y2 |
9 |
2 |
5 |
(2)设F1、F2是椭圆M:
x2 |
a2 |
y2 |
b2 |
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).