题目内容

(2013•大连一模)设离心率e=
1
2
的椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,P是x轴正半轴上一点,以PF1为直径的圆经过椭圆M短轴端点,且该圆和直线x+
3
y+3=0
相切,过点P的直线与椭圆M相交于相异两点A、C.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若相异两点A、B关于x轴对称,直线BC交x轴与点Q,求
QA
QC
的取值范围.
分析:(Ⅰ)设以|PF1|为直径的圆经过椭圆M短轴端点N,则|NF1|=a,由e=
1
2
可得a=2c,由此可得∠NF1P=
π
3
,再由|PF1|的长可判断F2为圆的圆心,根据圆与直线x+
3
y+3=0
相切,可解得c值,从而可求得a,b;
(Ⅱ)设点A(x1,y1),C(x2,y2),易知点B(x1,-y1),设直线PA的方程为y=k(x-3),代入椭圆方程消掉y得x的二次方程,由△>0得k2范围,由点斜式写出直线BC的方程,令y=0,由韦达定理可得Q点横坐标,利用向量数量积运算及韦达定理可把
QA
QC
表示为k的函数,由k2的范围即可求得
QA
QC
的范围;
解答:解:(Ⅰ)设以|PF1|为直径的圆经过椭圆M短轴端点N,
∴|NF1|=a,∵e=
1
2
,∴a=2c,
∠NF1P=
π
3
,|PF1|=2a.
∴F2(c,0)是以|PF1|为直径的圆的圆心,
∵该圆和直线x+
3
y+3=0
相切,
2c=
|c+3|
1+(
3
)
2
,解得c=1,a=2,b=
3

∴椭圆M的方程为:
x2
4
+
y2
3
=1

(Ⅱ)设点A(x1,y1),C(x2,y2),则点B(x1,-y1),
设直线PA的方程为y=k(x-3),
联立方程组
x2
4
+
y2
3
=1
y=k(x-3).
,消掉y,化简整理得(4k2+3)x2-24k2x+36k2-12=0,
由△=(24k22-4•(3+4k2)•(36k2-12)>0,得0<k2
3
5

x1+x2=
24k2
4k2+3
x1x2=
36k2-12
4k2+3

直线BC的方程为:y+y1=
y2+y1
x2-x1
(x-x1)

令y=0,则x=
y1x2+y2x1
y1+y2
=
2x1x2-3(x1+x2)
x1+x2-6
=
72k2-24
4k2+3
-
72k2
4k2+3
24k2
4k2+3
-6
=
4
3

∴Q点坐标为(
4
3
,0)

QA
QC
=(x1-
4
3
)(x2-
4
3
)+y1y2=(x1-
4
3
)(x2-
4
3
)+k2(x1-3)(x2-3)

=(1+k2)x1x2-(3k2+
4
3
)(x1+x2)+9k2+
16
9

=(1+k2)•
36k2-12
4k2+3
-(3k2+
4
3
)•
24k2
4k2+3
+9k2+
16
9

=
19k2-12
4k2+3
+
16
9
=
235
36
-
105
16k2+12

0<k2
3
5

QA
QC
∈(-
20
9
5
3
)
点评:本题考查直线、椭圆方程及其位置关系,考查向量的数量积运算,考查函数思想,考查学生分析解决问题的能力,综合性强,难度较大,对能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网