摘要:函数y=2cosx的图象与直线y=2在时围成的图象面积为 .三角函数的图象问题有一定的综合性.含有:周期性.奇偶性.最值.函数变换等内容.问题小.但是考察的方法灵活.学习方法包括:观察法.特殊结论法.函数变换法.要多加练习.五.能力测试: 姓名 得分
网址:http://m.1010jiajiao.com/timu_id_177676[举报]
(2009•济宁一模)给出下列四个命题:
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”;
②将函数y=
sin(2x+
)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移
个单位长度,得到函数y=
cosx的图象;
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
查看习题详情和答案>>
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”;
②将函数y=
2 |
π |
4 |
π |
4 |
2 |
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
①③
①③
.要得到函数y=
cosx的图象,只需将函数y=
sin(2x+
)的图象上所有的点的( )
2 |
2 |
π |
4 |
A、横坐标缩短到原来的
| ||||
B、横坐标缩短到原来的
| ||||
C、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动
| ||||
D、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动
|