网址:http://m.1010jiajiao.com/timu_id_159957[举报]
如图,三棱锥中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
【解析】第一问中,利用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则为直线AE与底面ABC 所成角,
解
(Ⅰ) 证明:由用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,
又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=
,
由(Ⅰ)已证平面PBC,所以
,即
,
故,
于是
所以直线AE与底面ABC 所成角的正弦值为
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
【解析】第一问中利用圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
第二问中,由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为
是定点,所以点
在定直线
第三问中,设直线,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去). …………………(2分)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是
查看习题详情和答案>>
如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BD
AE,BD
BA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ)证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,
∴OF∥EA且OF=且BD=
∴OF∥DB,OF=DB,
∴四边形BDOF是平行四边形。
∴OD∥FB
第二问中,当N是EM中点时,ON⊥平面ABDE。 ………7分
证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM
面ABC,
∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,
∴ON⊥平面ABDE。
查看习题详情和答案>>