题目内容

如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ)证明:OD//平面ABC;

(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四边形BDOF是平行四边形。

∴OD∥FB

第二问中,当N是EM中点时,ON⊥平面ABDE。           ………7分

证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,

∴ON⊥平面ABDE。

 

【答案】

见解析

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网