摘要:解 ∵f(1)=1,∴a+b+c=1. ① 2分又f′(x)=2ax+b,∵f′(2)=1,∴4a+b=1 . ② 3分
网址:http://m.1010jiajiao.com/timu_id_15978[举报]
奇函数f(x)的定义域为(-∞,0)∪(0,+∞),值域为R,当且仅当x>1时,f(x)>0.
关于f(x)有如下命题:①f(-1)=0;②方程f(x)=0有无穷解;③f(x)有最小值,但无最大值;④f(x)的图象关于原点对称,且f(x)是周期函数.其中正确命题的序号是
查看习题详情和答案>>
关于f(x)有如下命题:①f(-1)=0;②方程f(x)=0有无穷解;③f(x)有最小值,但无最大值;④f(x)的图象关于原点对称,且f(x)是周期函数.其中正确命题的序号是
①②
①②
.已知函数f(x)=lnx,g(x)=
x2+a(a为常数),若直线l与y=f(x)和y=g(x)的图象都相切,且l与y=f(x)的图象相切于定点P(1,f(1)).
(1)求直线l的方程及a的值;
(2)当k∈R时,讨论关于x的方程f(x2+1)-g(x)=k的实数解的个数.
查看习题详情和答案>>
1 | 2 |
(1)求直线l的方程及a的值;
(2)当k∈R时,讨论关于x的方程f(x2+1)-g(x)=k的实数解的个数.
已知向量
=(sin(x-
),-1),
=(2,2)且f(x)=
•
+2
①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
)的值域
解:(1)列表
(2)作图
查看习题详情和答案>>
a |
π |
4 |
b |
a |
b |
①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π |
4 |
解:(1)列表