搜索
摘要:∴==()2n-1.它是以为首项.公比为的等比数列.
网址:http://m.1010jiajiao.com/timu_id_15335
[举报]
已知函数
F(x)=
3x-2
2x-1
(x≠
1
2
)
(1)求
F(
1
2011
)+F(
2
2011
)+…+F(
2010
2011
)
;
(2)已知数列{a
n
}满足a
1
=2,a
n+1
=F(a
n
),求数列{a
n
}的通项公式;
(3) 求证:a
1
a
2
a
3
…a
n
>
2n+1
.
查看习题详情和答案>>
(2
n+1
)
2
•2
-2n-1
÷4
n
=
;
2
|
log
1
2
0.3|-1
=
;
lo
g
0.25
5
8
=
.
查看习题详情和答案>>
10、,设{a
n
}是正项数列,其前n项和S
n
满足:4S
n
=(a
n
-1)(a
n
+3),则数列{a
n
}的通项公式a
n
=
2n+1
.
查看习题详情和答案>>
设数列{a
n
}的前n项和为S
n
,已知ba
n
-2
n
=(b-1)S
n
(Ⅰ)证明:当b=2时,{a
n
-n•2
n-1
}是等比数列;
(Ⅱ)求{a
n
}的通项公式.
查看习题详情和答案>>
已知数列{a
n
},a
n
=2
n
+1,则
1
a
2
-
a
1
+
1
a
3
-
a
2
+…+
1
a
n+1
-
a
n
=( )
A、
1+
1
2
n
B、1-2
n
C、
1-
1
2
n
D、1+2
n
查看习题详情和答案>>
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总