摘要:解法三:原函数f (x)=log5(x2+1)经过点(2.1).反函数y=g (x)经过点点代入排除A. B.又原函数中y≥1.从而反函数中x≥1.排除 C.故选D. 学科网16 若函数y=log2|ax-1|的图象的对称轴为x=2.则非零实数a的值是( )
网址:http://m.1010jiajiao.com/timu_id_148767[举报]
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
②计算f(
)+f(
)+f(
)+…+f(
)+f(
)=
查看习题详情和答案>>
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
(
,-
)
1 |
2 |
1 |
2 |
(
,-
)
;1 |
2 |
1 |
2 |
②计算f(
1 |
2013 |
2 |
2013 |
3 |
2013 |
2012 |
2013 |
2013 |
2013 |
-1019
-1019
.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为______;
②计算f(
)+f(
)+f(
)+…+f(
)+f(
)=______.
查看习题详情和答案>>
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为______;
②计算f(
1 |
2013 |
2 |
2013 |
3 |
2013 |
2012 |
2013 |
2013 |
2013 |
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x,则称点(x,f(x))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为 ;
②计算= . 查看习题详情和答案>>
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为 ;
②计算= . 查看习题详情和答案>>