题目内容

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)

②计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019
分析:①求出所给函数的二阶导数,由二阶导数等于0求出x的值,代入原函数求出对称中心;
②利用对称中心坐标得到前2012项的和,在求出f(1)的值,则答案可求.
解答:解:①由f(x)=2x3-3x2-24x+12,得f=6x2-6x-24,f′′(x)=12x-6.
由f′′(x)=12x-6=0,得x=
1
2
.f(
1
2
)=2×(
1
2
)3-3×(
1
2
)2-24×
1
2
+12=-
1
2

所以函数f(x)=2x3-3x2-24x+12的对称中心坐标为(
1
2
,-
1
2
)

故答案为(
1
2
,-
1
2
)

②因为函数f(x)=2x3-3x2-24x+12的对称中心坐标为(
1
2
,-
1
2
)

所以f(
1
2013
)+f(
2012
2013
)=f(
2
2013
)+f(
2011
2013
)=…=2f(
1
2
)=2×(-
1
2
)
=-1.
f(
2013
2013
)=f(1)=-13

所以f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=-1006-13=-1019.
故答案为-1019.
点评:本题考查了简单的演绎推理,是新定义题,解答的关键是利用对称中心求值,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网