摘要:设数列{an}的前n项和为Sn.满足an+1=Sn-3n.(1)当a1=1时.用n表示Sn,(2)求首项a1的取值范围.使{an}是递减数列.
网址:http://m.1010jiajiao.com/timu_id_147052[举报]
(本小题满分12分)
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
(本小题满分12分)
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
(本小题满分12分)
设{an}是公差不为O的等差数列,Sn是其前n项和,已知,且
(1)求数列{an}的通项an
(2)求等比数列{bn}满足b1=S1 ,b2=, 求和Tn=a1b1+a2b2+…+anbn
查看习题详情和答案>>