摘要:21.已知椭圆中心在原点.焦点在坐标轴上.直线与椭圆在第一象限内的交点是.点在轴上的射影恰好是椭圆的右焦点.另一个焦点是.且.(1)求椭圆的方程,(2)直线过点.且与椭圆交于两点.求的内切圆面积的最大值.
网址:http://m.1010jiajiao.com/timu_id_135712[举报]
(本题满分12分)已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
查看习题详情和答案>>(本题满分12分)已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
(本题满分12分)已知椭圆E:(其中),直 线L与椭圆只有一个公共点T;两条平行于y轴的直线分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.
(Ⅰ)若直线L在轴上的截距为,求证: 直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若的最大值为1200,求椭圆E的方程.
查看习题详情和答案>>