网址:http://m.1010jiajiao.com/timu_id_130198[举报]
1. 构造向量,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式(
)表示的区域是如图所示的菱形的内部,
∵,
当,点
到点
的距离最大,此时
的最大值为
;
当,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵
,∴
,
设,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组,得
,∴
在中,已知
,面积
,
(1)求的三边的长;
(2)设是
(含边界)内的一点,
到三边
的距离分别是
①写出所满足的等量关系;
②利用线性规划相关知识求出的取值范围.
【解析】第一问中利用设中角
所对边分别为
由得
又由得
即
又由得
即
又
又
得
即的三边长
第二问中,①得
故
②
令依题意有
作图,然后结合区域得到最值。
查看习题详情和答案>>
在数列中,
,其中
,对任意
都有:
;(1)求数列
的第2项和第3项;
(2)求数列的通项公式
,假设
,试求数列
的前
项和
;
(3)若对一切
恒成立,求
的取值范围。
【解析】第一问中利用)同理得到
第二问中,由题意得到:
累加法得到
第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。
(1)同理得到
……2分
(2)由题意得到:
又
……5分
……8分
(3)
查看习题详情和答案>>
已知m>1,直线,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点
(
,0),所以
=
,得
.又因为m>1,所以
,故直线的方程为
第二问中设,由
,消去x,得
,
则由,知
<8,且有
由题意知O为的中点.由
可知
从而
,设M是GH的中点,则M(
).
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
【解析】本试题主要考查了余弦定理的运用。利用由题意得,
,
并且
有
得到结论。
解:(Ⅰ)由题意得,
………1分
…………1分
(Ⅱ)………………1分
查看习题详情和答案>>
在复平面内, 是原点,向量
对应的复数是
,
=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数
和
;
(Ⅱ)复数,
对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
【解析】第一问中利用复数的概念可知得到由题意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二问中,由题意得,=(2,1)
∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
(Ⅰ)由题意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四点在同一个圆上。 2分
证明:由题意得,=(2,1)
∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
查看习题详情和答案>>