摘要:(1)若数列成等比数列.求常数的值,
网址:http://m.1010jiajiao.com/timu_id_12293[举报]
一、填空题(本大题满分48分,每小题4分,共12小题)
1.
; 2.
; 3.
; 4.
; 5.
;
6.
; 7.
; 8.
; 9.
; 10.
;
11.
; 12.
.
二、选择题(本大题满分16分,每小题4分,共4小题)
13.C; 14.A; 15.B; 16.C;
三、解答题(本大题满分86分,本大题共有6题)
17.(1)
;
.files\image203.gif)
(2)
; .files\image207.gif)
18.1号至4号正四棱柱形容器是体积依次为
。
∵
,
,
∴ 存在必胜方案,即选择3号和4号容器。
19.(1)∵ 由正弦定理,
,∴
,
。
∵
, ∴
,即
。∴
。
(2)∵
,
∴
。
20.(1)设放水
分钟内水箱中的水量为
升
依题意得
;
分钟时,水箱的水量
升, 放水后
分钟水箱内水量接近最少;
(2)该淋浴器一次有
个人连续洗浴, 于是,
,.files\image245.gif)
所以,一次可最多连续供7人洗浴。
21.(1)由
及.files\image251.gif)
,∴
时
成等比数列。
(2)因
,由(1)知,
,故
。
(3)设存在
,使得
成等差数列,则
,
即.files\image271.gif)
因
,所以
,
∴不存在
中的连续三项使得它们可以构成等差数列。
22.(1)解:设
为函数
图像的一个对称点,则
对于
恒成立.即
对于
恒成立,
由
,故
图像的一个对称点为
.
(2)解:假设
是函数
(
的图像的一个对称点,
则
(
对于
恒成立,
即
对于
恒成立,因为
,所以
不
恒成立,
即函数
(
的图像无对称点.
(14分)若数列
满足
,其中
为常数,则称数列
为等方差数列.已知等方差数列
满足![]()
成等比数列且互不相等.
(Ⅰ)求数列
的通项公式;
(Ⅱ)求数列
的前
项和;
若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),证明:数列{an+1-2an}是等比数列,并进一步求出{an}的通项公式an.
查看习题详情和答案>>
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),证明:数列{an+1-2an}是等比数列,并进一步求出{an}的通项公式an.
查看习题详情和答案>>
若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>