网址:http://m.1010jiajiao.com/timu_id_121081[举报]
设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.
解:令f(x)=21-x+a,因为f(x)>0在A上有解.
|
=2+a>0⇒a>-2
学习以上问题的解法,解决下面的问题,已知:函数f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函数f-1(x)及反函数的定义域A;
②设B={x|lg
10-x |
10+x |
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
第二问,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,,有;当时,,有;当x=1时,,有
解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,,有;当时,,有;当x=1时,,有
查看习题详情和答案>>
仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.
解:令f(x)=21-x+a,因为f(x)>0在A上有解。
=2+a>0a>-2
学习以上问题的解法,解决下面的问题,已知:函数f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函数f-1(x)及反函数的定义域A;
②设B=,若A∩B≠,求实数a的取值范围.
查看习题详情和答案>>
已知函数
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。
第三问中,
因为,这样利用单调性证明得到不等式成立。
解:(Ⅰ)
(Ⅱ)
(Ⅲ)见解析
查看习题详情和答案>>
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.