题目内容
已知函数
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。
第三问中,
因为,这样利用单调性证明得到不等式成立。
解:(Ⅰ)
(Ⅱ)
(Ⅲ)见解析
【答案】
解:(Ⅰ)
(Ⅱ)假设存在实数a,使有最小值3,
①(舍去),
②
.
③
(Ⅲ)
练习册系列答案
相关题目