网址:http://m.1010jiajiao.com/timu_id_117182[举报]
一、填空题(每题5分,理科总分55分、文科总分60分):
1. ; 2. 理:2;文:; 3. 理:1.885;文:2;
4. 理:;文:1.885; 5. 理:;文:4; 6. 理:;文:;
7. 理:;文:; 8. 理:;文:6; 9. 理:;文:;
10. 理:1; 文:; 11. 理:;文:; 12. 文:;
二、选择题(每题4分,总分16分):
题号
理12;文13
理13;文14
理:14;文:15
理15;文:16
答案
A
C
B
C
三、解答题:
16.(理,满分12分)
解:因为抛物线的焦点的坐标为,设、,
由条件,则直线的方程为,
代入抛物线方程,可得,则.
于是,.
…2
…4
…8
…12
17.(文,满分12分)
解:因为,所以由条件可得,.
即数列是公比的等比数列.
又,
所以,.
…4
…6
…8
…12
(理)17.(文)18. (满分14分)
解:因为
所以,
即或,
或,
又由,即
当时,或;当时,或.
所以,集合.
…3
…7
…11
…14
18.(理,满分15分,第1小题6分,第2小题9分)
解:(1)当时,
故,,所以.
(2)证:由数学归纳法
(i)当时,易知,为奇数;
(ii)假设当时,,其中为奇数;
则当时,
所以,又、,所以是偶数,
而由归纳假设知是奇数,故也是奇数.
综上(i)、(ii)可知,的值一定是奇数.
证法二:因为
当为奇数时,
则当时,是奇数;当时,
因为其中中必能被2整除,所以为偶数,
于是,必为奇数;
当为偶数时,
其中均能被2整除,于是必为奇数.
综上可知,各项均为奇数.
…3
…6
…8
…10
…14
…15
…10
…14
…15
19. (文,满分14分)
解:如图,设中点为,联结、.
由题意,,,所以为等边三角形,
故,且.
又,
所以.
而圆锥体的底面圆面积为,
所以圆锥体体积.
…3
…8
…10
…14
(理)19. (文)20. (满分16分,第1小题4分,第2小题6分,第3小题6分)
解:(1)由题意,当和之间的距离为
且此时中边上的高为
又因为米,可得米.
所以,平方米,
即三角通风窗的通风面积为平方米.
(2)1如图(1)所示,当在矩形区域滑动,即时,
的面积;
2如图(2)所示,当在半圆形区域滑动,即时,
,故可得的面积
;
综合可得:
(3)1当在矩形区域滑动时,在区间上单调递减,
则有;
2当在半圆形区域滑动时,
,
等号成立,.
因而当(米)时,每个三角通风窗得到最大通风面积,最大面积为(平方米).
…2
…4
…6
…9
…10
…12
…15
…16
21(文,满分18分,第1小题5分,第2小题6分,第3小题7分)
解:(1)设右焦点坐标为().
因为双曲线C为等轴双曲线,所以其渐近线必为,
由对称性可知,右焦点到两条渐近线距离相等,且.
于是可知,为等腰直角三角形,则由,
又由等轴双曲线中,.
即,等轴双曲线的方程为.
(2)设、为双曲线直线的两个交点.
因为,直线的方向向量为,直线的方程为
.
代入双曲线的方程,可得,
于是有
而
.
(3)假设存在定点,使为常数,其中,为直线与双曲线的两个交点的坐标.
①当直线与轴不垂直时,设直线的方程为
代入,可得.
由题意可知,,则有 ,.
于是,
要使是与无关的常数,当且仅当,此时.
②当直线与轴垂直时,可得点,,
若,亦为常数.
综上可知,在轴上存在定点,使为常数.
…3
…5
…7
…9
…11
…13
…16
…17
…18
20(理,满分22分,第1小题4分,第2小题6分,第3小题12分)
解:(1)解法一:由题意,四边形是直角梯形,且∥,
则与所成的角即为.
因为,又平面,
所以平面,则有.
因为,,
所以,则,
即异面直线与所成角的大小为.
解法二:如图,以为原点,直线为轴、直线为轴、直线为轴,
建立空间直角坐标系.
于是有、,则有,又
则异面直线与所成角满足,
所以,异面直线与
(本题满分13分)
某班几位同学组成研究性学习小组,对岁的人群随机抽取n人进行了一次日常生活中是否
具有环保意识的调查. 若生活习惯具有环保意识的称为“环保族”,否则称为 “非环保族”,得到如下统计表:
组数 | 分组 | 环保族人数 | 占本组的频率 | 本组占样本的频率 |
第一组 |
| 120 | 0.6 | 0.2 |
第二组 |
| 195 | p | q |
第三组 |
| 100:] | 0.5 | 0.2 |
第四组 |
| a | 0.4 | 0.15 |
第五组 |
| 30 | 0.3 | 0.1 |
第六组 |
| 15 | 0.3 | 0.05 |
(Ⅰ)求q、n、a、p的值;
(Ⅱ)从年龄段在的“环保族”中采用分层抽样法抽取6人参加户外环保活动,其中选取2人
作为领队,求选取的2名领队中恰有1人年龄在的概率.
查看习题详情和答案>>(本小题满分12分)
某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第一组 | 8 | 0.16 | |
第二组 | ① | 0.24 | |
第三组 | 15 | ② | |
第四组 | 10 | 0.20 | |
第五组 | 5 | 0.10 | |
合 计 | 50 | 1.00 |
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率. 查看习题详情和答案>>
(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?
查看习题详情和答案>>
(本小题满分15分)
在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图。
在选取的40名学生中。
(I)求成绩在区间内的学生人数;
(II)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100]内的概率。
查看习题详情和答案>>
(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?