摘要:如图1所示.在静止的点电荷+Q所产生的电场中.有与+Q共面的A.B.C三点.且B.C处于以+Q为圆心的同一圆周上.设A.B.C三点的电场强度大小分别为EA.EB.EC.电势分别为φA.φB.φC.则下列判断正确的是:
网址:http://m.1010jiajiao.com/timu_id_1083478[举报]
如图所示,在绝缘水平面上的P点放置一个质量为mA=0.02kg的带负电滑块A,带电荷量q=1.0×10-6C.在A的左边相距l=0.9m的Q点放置一个不带电的滑块B,质量为mB=0.04kg,滑块B距左边竖直绝缘墙壁s=0.15m.在水平面上方空间加一方向水平向右的匀强电场,电场强度为E=4.0×105N/C,使A由静止释放后向左滑动并与B发生碰撞,碰撞的时间极短,碰撞后两滑块结合在一起共同运动,与墙壁发生碰撞时没有机械能损失,两滑块都可以视为质点.已知水平面OQ部分粗糙,其余部分光滑,两滑块与粗糙水平面OQ间的动摩擦因数均为μ=0.50,假设最大静摩擦力等于滑动摩擦力,取g=10m/s2.求:
(1)A经过多少时间与B相碰?相碰结合后的速度是多少?
(2)AB与墙壁碰撞后在水平面上滑行的过程中,离开墙壁的最大距离是多少?
(3)A、B相碰结合后的运动过程中,由于摩擦而产生的热是多少?通过的总路程是多少?
查看习题详情和答案>>
(1)A经过多少时间与B相碰?相碰结合后的速度是多少?
(2)AB与墙壁碰撞后在水平面上滑行的过程中,离开墙壁的最大距离是多少?
(3)A、B相碰结合后的运动过程中,由于摩擦而产生的热是多少?通过的总路程是多少?
如图所示,固定的光滑绝缘圆形轨道竖直放置,处于水平方向的匀强电场和匀强磁场中.已知圆形轨道半径R=2.00m,AD为其水平直径.磁感应强度B=1.00T,方向垂直于纸面向内,电场强度E=1.00×102V/m,方向水平向右.一个质量m=4.00×10-2kg的小球(可视为质点)在轨道上的C点恰好处于静止状态,OC与竖直直径的夹角θ=37°(g取10m/s2,sin37°=0.6,计算结果要求保留三位有效数字)
(1)求小球带何种电荷,电荷量q是多少?
(2)现将电场突然反向,但强弱不变,因电场的变化而产生的磁场可忽略不计,小球始终在圆弧轨道上运动,试求在小球运动过程中与初始位置的电势差最大值Um是多少?对轨道的最大压力是多大?
查看习题详情和答案>>
(1)求小球带何种电荷,电荷量q是多少?
(2)现将电场突然反向,但强弱不变,因电场的变化而产生的磁场可忽略不计,小球始终在圆弧轨道上运动,试求在小球运动过程中与初始位置的电势差最大值Um是多少?对轨道的最大压力是多大?
如图所示,固定的光滑绝缘圆形轨道竖直放置,处于水平方向的匀强电场和匀强磁场中.已知圆形轨道半径R=2.00m,AD为其水平直径.磁感应强度B=1.00T,方向垂直于纸面向内,电场强度E=1.00×102V/m,方向水平向右.一个质量m=4.00×10-2kg的小球(可视为质点)在轨道上的C点恰好处于静止状态,OC与竖直直径的夹角θ=37°(g取10m/s2,sin37°=0.6,计算结果要求保留三位有效数字)
(1)求小球带何种电荷,电荷量q是多少?
(2)现将电场突然反向,但强弱不变,因电场的变化而产生的磁场可忽略不计,小球始终在圆弧轨道上运动,试求在小球运动过程中与初始位置的电势差最大值Um是多少?对轨道的最大压力是多大?
查看习题详情和答案>>
(1)求小球带何种电荷,电荷量q是多少?
(2)现将电场突然反向,但强弱不变,因电场的变化而产生的磁场可忽略不计,小球始终在圆弧轨道上运动,试求在小球运动过程中与初始位置的电势差最大值Um是多少?对轨道的最大压力是多大?
查看习题详情和答案>>
(18分)如图所示,水平放置的足够长的平行金属导轨MN、PQ的一端接有电阻R0,不计电阻的导体棒ab静置在导轨的左端MP处,并与MN垂直.以导轨PQ的左端为坐标原点O,建立直角坐标系xOy,Ox轴沿PQ方向.每根导轨单位长度的电阻为r.垂直于导轨平面的非匀强磁场磁感应强度在y轴方向不变,在x轴方向上的变化规律为:B=B0+kx,并且x≥0.现在导体棒中点施加一垂直于棒的水平拉力F,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a.设导体棒的质量为m,两导轨间距为L.不计导体棒与导轨间的摩擦,导体棒与导轨接触良好,不计其余部分的电阻.
(1)请通过分析推导出水平拉力F的大小随横坐标x变化的关系式;
(2)如果已知导体棒从x=0运动到x=x0的过程中,力F做的功为W,求此过程回路中产生的焦耳热Q;
(3)若B0=0.1T,k=0.2T/m,R0=0.1Ω,r=0.1Ω/m,L=0.5m,
a=4m/s2,求导体棒从x=0运动到x=1m的过程中,通过电阻R0的电荷量q.
(18分)如图所示,水平放置的足够长的平行金属导轨MN、PQ的一端接有电阻R0,不计电阻的导体棒ab静置在导轨的左端MP处,并与MN垂直.以导轨PQ的左端为坐标原点O,建立直角坐标系xOy,Ox轴沿PQ方向.每根导轨单位长度的电阻为r.垂直于导轨平面的非匀强磁场磁感应强度在y轴方向不变,在x轴方向上的变化规律为:B=B0+kx,并且x≥0.现在导体棒中点施加一垂直于棒的水平拉力F,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a.设导体棒的质量为m,两导轨间距为L.不计导体棒与导轨间的摩擦,导体棒与导轨接触良好,不计其余部分的电阻.
(1)请通过分析推导出水平拉力F的大小随横坐标x变化的关系式;
(2)如果已知导体棒从x=0运动到x=x0的过程中,力F做的功为W,求此过程回路中产生的焦耳热Q;
(3)若B0=0.1T,k=0.2T/m,R0=0.1Ω,r=0.1Ω/m,L=0.5m,
a=4m/s2,求导体棒从x=0运动到x=1m的过程中,通过电阻R0的电荷量q.
(1)请通过分析推导出水平拉力F的大小随横坐标x变化的关系式;
(2)如果已知导体棒从x=0运动到x=x0的过程中,力F做的功为W,求此过程回路中产生的焦耳热Q;
(3)若B0=0.1T,k=0.2T/m,R0=0.1Ω,r=0.1Ω/m,L=0.5m,
a=4m/s2,求导体棒从x=0运动到x=1m的过程中,通过电阻R0的电荷量q.