摘要:(2)在中..故由正弦定理得
网址:http://m.1010jiajiao.com/timu_id_101806[举报]
已知中,,.设,记.
(1) 求的解析式及定义域;
(2)设,是否存在实数,使函数的值域为?若存在,求出的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在中,由,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得.显然,,则
1当m>0的值域为m+1=3/2,n=1/2
2当m<0,不满足的值域为;
因而存在实数m=1/2的值域为.
查看习题详情和答案>>
给出问题:已知满足,试判定的形状.某学生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)设外接圆半径为.由正弦定理可得,原式等价于
,
故是等腰三角形.
综上可知,是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
查看习题详情和答案>>
给出问题:已知满足,试判定的形状.某学生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)设外接圆半径为.由正弦定理可得,原式等价于
,
故是等腰三角形.
综上可知,是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)设外接圆半径为.由正弦定理可得,原式等价于
,
故是等腰三角形.
综上可知,是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .