摘要:如图.在正三棱柱ABC-A1B1C1中,, F是AC的中点. 截面A1EC ^ 侧面AC1 .求证:BF//平面A1EC

网址:http://m.1010jiajiao.com/timu3_id_535997[举报]

如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
精英家教网
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
精英家教网
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
 

∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

∴FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1
.
查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,F是AC的中点,截面A1EC⊥侧面AC1.求证:BF∥平面A1EC.
查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E是BB1的中点。

(1)求证:截面A1EC⊥平面ACC1A1;
(2)若AA1=A1B1,且F是AC中点,求直线EF与面A1EC所成角的大小。

查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,F是AC的中点,截面A1EC⊥侧面AC1.求证:BF∥平面A1EC.

查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.

(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).

(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵______
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵______
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵______
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵______
∴FG∥AA1,△AA1C∽△FGC,
⑤∵______
∴,即.
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网
  • 首页
  • 练习册答案
  • 课本点读
  • 寒假作业答案
  • 暑假作业答案
  • 试题分类
退出登录
关 闭

试题分类

高中
数学英语物理化学生物地理
初中
数学英语物理化学生物地理
小学
数学英语
其他
阅读理解答案已回答习题未回答习题题目汇总试卷汇总练习册解析答案