摘要:21.本题三个选答题.每题7分.请考生任选2题作答.满分14分如果多做.则按所做的前两题计分. 选修4-2,矩阵与变换 已知二阶矩阵A的属于特征值-1的一个特征向量为.属于特征值3的一个特征向量为.求矩阵A. 选修4-4.坐标系与参数方程 选定了极点.极轴.长度单位.角度正向的坐标系统叫做极坐标系.已知圆M过图中A.D.G三点,试建立适当的极坐标系.并求出该圆的极坐标方程. 选修4-5,不等式选讲 关于的二次方程有实根.求的取值范围 莆田一中2009届高三质量检查 理科数学试题参考解答及评分标准2009-5-4
网址:http://m.1010jiajiao.com/timu3_id_532714[举报]
本题有(1)、(2)、(3)三个小题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分
(1)已知
B=
,求矩阵B.
(2)已知极点与原点重合,极轴与x轴正半轴重合,若曲线C1的极坐标方程为:ρcos(θ-
)=
,曲线C2的参数方程为:
(θ为参数),试求曲线C1、C2的交点的直角坐标.
(3)已知x2+2y2+3z2=
,求3x+2y+z的最小值.
查看习题详情和答案>>
(1)已知
|
|
(2)已知极点与原点重合,极轴与x轴正半轴重合,若曲线C1的极坐标方程为:ρcos(θ-
| π |
| 4 |
| 2 |
|
(3)已知x2+2y2+3z2=
| 18 |
| 17 |
本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
|
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
|
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
,A的一个特征值λ=2,其对应的特征向量是α1=
.
(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
,计算A2β的值.
(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
,点F1,F2为其左、右焦点,直线l的参数方程为
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
+
+
≥
+
+
.
查看习题详情和答案>>
(1).选修4-2:矩阵与变换
已知矩阵A=
|
|
(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
|
(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
| 12 |
| 3cos2θ+4sin2θ |
|
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
| x |
| yz |
| y |
| zx |
| z |
| xy |
| 1 |
| x |
| 1 |
| y |
| 1 |
| z |
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
有特征值λ=-1及对应的一个特征向量e1=
.
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
(t为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
|
|
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
|
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.
本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
,Q=
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
sinθ)=6的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
|
|
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
| 3 |
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.