ÌâÄ¿ÄÚÈÝ
±¾ÌâÓУ¨I£©¡¢£¨II£©¡¢£¨III£©Èý¸öÑ¡×÷Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡Á½Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö£¬×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa¡ÊR£¬¾ØÕóP=
£¬Q=
£¬Èô¾ØÕóPQ¶ÔÓ¦µÄ±ä»»°ÑÖ±Ïßl1£ºx-y+4=0±äΪֱÏßl2£ºx+y+4=0£¬ÇóʵÊýaµÄÖµ£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬ÇóÔ²C£º¦Ñ=2ÉϵĵãPµ½Ö±Ïßl£º¦Ñ(cos¦È+
sin¦È)=6µÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑ֪ʵÊýx£¬yÂú×ãx2+4y2=a£¨a£¾0£©£¬ÇÒx+yµÄ×î´óֵΪ5£¬ÇóʵÊýaµÄÖµ£®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa¡ÊR£¬¾ØÕóP=
|
|
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬ÇóÔ²C£º¦Ñ=2ÉϵĵãPµ½Ö±Ïßl£º¦Ñ(cos¦È+
3 |
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑ֪ʵÊýx£¬yÂú×ãx2+4y2=a£¨a£¾0£©£¬ÇÒx+yµÄ×î´óֵΪ5£¬ÇóʵÊýaµÄÖµ£®
·ÖÎö£º£¨1£©ÏȼÆËã¾ØÕóAB¶ÔÓ¦µÄ±ä»»£¬ÔÙÇó³öÔڱ任ϵãµÄ×ø±êÖ®¼äµÄ¶ÔÓ¦¹Øϵ£¬´Ó¶ø¿ÉÇóÖ±Ïßl2µÄ·½³Ì£¬×îºóÓëÒÑÖª·½³Ì¶ÔÕտɵõ½aÖµ£®
£¨2£©Ô²p=2¡¢Ö±Ïßp£¨cos¦È+
sin¦È£©=6»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬ÔÙÇóÔ²p=2Éϵĵ㵽ֱÏßp£¨cos¦È+
sin¦È£©=6µÄ¾àÀëµÄ×îСֵ£®
£¨3£©¿ÉÉè³öÍÖÔ²x2+4y2=a²ÎÊý·½³Ì£¬×ª»¯ÎªÈý½Çº¯Êý£¬ÀûÓÃÈý½Çº¯ÊýµÄÓнçÐÔÇó×îÖµ£¬´Ó¶øµÃ³öaµÄÖµ£®
£¨2£©Ô²p=2¡¢Ö±Ïßp£¨cos¦È+
3 |
3 |
£¨3£©¿ÉÉè³öÍÖÔ²x2+4y2=a²ÎÊý·½³Ì£¬×ª»¯ÎªÈý½Çº¯Êý£¬ÀûÓÃÈý½Çº¯ÊýµÄÓнçÐÔÇó×îÖµ£¬´Ó¶øµÃ³öaµÄÖµ£®
½â´ð£º½â£º£¨1£©¡ß¾ØÕóP=
£¬Q=
£¬
¡àPQ=
¡£¨3·Ö£©£¬
ÔÚÖ±Ïßl1ÉÏÈÎÈ¡Ò»µãP£¨x£¬y£©£¬¾¾ØÕóPQ±ä»»ÎªµãQ£¨x¡ä£¬y¡ä£©£¬Ôò
£¨x£¬y£©
=£¨x¡ä£¬y¡ä£©£¬
¼´
¡£¨8·Ö£©
´úÈëx+y+4=0ÖеÃ2ax-y+4=0£¬
¡à2a=1£¬a=
£»
£¨2£©Ô²p=2¡¢Ö±Ïßp£¨cos¦È+
sin¦È£©=6»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬
·Ö±ðΪx2+y2=4£¬x+
y-6=0
Ô²Ðĵ½Ö±ÏߵľàÀëΪ£º
=3
ËùÒÔÔ²p=2Éϵĵ㵽ֱÏßp£¨cos¦È+
sin¦È£©=6µÄ¾àÀëµÄ×îСֵÊÇ3-2=1
£¨3£©x2+4y2=a²ÎÊý·½³ÌÊÇ
£¬¦È¡ÊR
Ôòx+y=
cos¦È+
sin¦È=
sin(¦È+∅)£¬
¡àx+yµÄ×î´óֵΪ
=5£¬½âµÃa=20£®
|
|
¡àPQ=
|
ÔÚÖ±Ïßl1ÉÏÈÎÈ¡Ò»µãP£¨x£¬y£©£¬¾¾ØÕóPQ±ä»»ÎªµãQ£¨x¡ä£¬y¡ä£©£¬Ôò
£¨x£¬y£©
|
¼´
|
´úÈëx+y+4=0ÖеÃ2ax-y+4=0£¬
¡à2a=1£¬a=
1 |
2 |
£¨2£©Ô²p=2¡¢Ö±Ïßp£¨cos¦È+
3 |
·Ö±ðΪx2+y2=4£¬x+
3 |
Ô²Ðĵ½Ö±ÏߵľàÀëΪ£º
|-6| | ||
|
ËùÒÔÔ²p=2Éϵĵ㵽ֱÏßp£¨cos¦È+
3 |
£¨3£©x2+4y2=a²ÎÊý·½³ÌÊÇ
|
Ôòx+y=
a |
| ||
2 |
|
¡àx+yµÄ×î´óֵΪ
|
µãÆÀ£º¿¼²é¾ØÕó±ä»»£¬¿¼²é¾ØÕó±ä»»µÄÔËÓ㬵㵽ֱÏߵľàÀ빫ʽ£¬¼òµ¥ÇúÏߵļ«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿