摘要: 如图.椭圆:....为椭圆的顶点. (Ⅰ)若椭圆上的点到焦点距离的最大值为.最小值为. 求椭圆方程 (Ⅱ)已知:直线相交于.两点(不是椭圆的左右顶点).并满足.试研究:直线是否过定点? 若过定点.请求出定点坐标.若不过定点.请说明理由.
网址:http://m.1010jiajiao.com/timu3_id_529930[举报]
(本小题满分12分)
如图,设抛物线C1:
的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率
的椭圆C2与抛物线C1在x轴上方的交点为P。
当m = 1时,求椭圆C2的方程;
当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2……⊙Cn是圆心在
上的一系列圆,它们的圆心纵坐标分别为a1,a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ck(k = 1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.
|
(本小题满分12分) 如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆![]()
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若不过点
的动直线
与椭圆
相交于
、
两点,
且
求证:直线
过定点,并求出该定点
的坐标.
(本小题满分12分)
如图,在直角坐标系
中,已知椭圆
:
的离心率
,左、右两个焦点分别为
、
。过右焦点
且与
轴垂直的直线与椭圆
相交
、
两点,且
.
(1)求椭圆
的方程;
(2)设椭圆
的左顶点为
,下顶点为
,动点
满足
,试求点
的轨迹方程,使点
关于该轨迹的对称点落在椭圆
上.
如图,在直角坐标系
(1)求椭圆
(2)设椭圆