摘要:20. 若椭圆过点.离心率为.⊙O的圆心在原点.直径为椭圆的短轴.⊙M的方程为.过⊙M上任一点P作⊙O的切线PA.PB.切点为A.B. (1) 求椭圆的方程, (2)若直线PA与⊙M的另一交点为Q.当弦PQ最大时.求直线PA的方程.
网址:http://m.1010jiajiao.com/timu3_id_528938[举报]
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1)求
,
的标准方程, 并分别求出它们的离心率
;
2)设直线
与椭圆
交于不同的两点
,且
(其中
坐标原点),请问是否存在这样的直线
过抛物线
的焦点
若存在,求出直线
的方程;若不存在,请说明理由.
查看习题详情和答案>>
(本小题满分14分)
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上
有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
![]()
查看习题详情和答案>>
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
1)求
2)设直线