摘要:22.设分别为椭圆的左.右两个焦点.若椭圆C上的点两点的距离之和等于4. ⑴ 求出椭圆C的方程和焦点坐标, ⑵ 过点P(0.)的直线与椭圆交于两点M.N.若OM⊥ON.求直线MN的方程.
网址:http://m.1010jiajiao.com/timu3_id_527801[举报]
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()
查看习题详情和答案>>
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
设
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得