摘要: 设椭圆C:的左焦点为F.上顶点为A.过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P.Q.且. ⑴求椭圆C的离心率, ⑵若过A.Q.F三点的圆恰好与直线l: 相切.求椭圆C的方程.
网址:http://m.1010jiajiao.com/timu3_id_526032[举报]
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
查看习题详情和答案>>
(本小题满分14分)
设椭圆C:
的左、右焦点分别为F1、F2,A是椭圆C上的一点,
,坐标原点O到直线AF1的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x 轴于点
,交
y 轴于点M,若
,求直线l 的斜率.
查看习题详情和答案>>
(本小题满分14分)
已知点P (4,4),圆C:
与椭圆E:
的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线
与圆C相切。
(1)求m的值与椭圆E的方程;
(2)设D为直线PF1与圆C 的切点,在椭圆E上是否存在点Q ,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。
查看习题详情和答案>>