摘要:20. 函数函数f(x)当x=1时有极值. (1) 求m与n的关系表达式, 的单调区间, (3) 当函数y=f(x)的图象上任意一点的切线斜率恒大于3m.求m的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_525632[举报]
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对
x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2;
②若当x≥x1时,关于x的不等式ax2-x+xe
+1≤0恒成立,求实数a的取值范围.
查看习题详情和答案>>
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对
x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2;
②若当x≥x1时,关于x的不等式ax2-x+xe
+1≤0恒成立,求实数a的取值范围.
(本小题满分14分)
已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈
时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
查看习题详情和答案>>