摘要:20. 已知椭圆C的中心在原点.焦点在x轴上.它的一个顶点恰好是抛物线y=x2的焦点.离心率等于. (1)求椭圆C的方程, (2)过椭圆C的右焦点F作直线l交椭圆C于A.B两点.交y轴于M点.若=λ1.=λ2.求证λ1+λ2为定值.
网址:http://m.1010jiajiao.com/timu3_id_523464[举报]
(本小题满分12分)
已知椭圆C的中心在原点、焦点在
轴上,椭圆C上的点到焦点的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线
:
与
椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线
过定点,并求出定点的坐标.
已知椭圆C的中心在原点、焦点在
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线
(本小题满分12分)
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线
,使得
和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于
的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当
的面积最大时点P的坐标.
查看习题详情和答案>>
(本小题满分12分)
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线
,使得
和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于
的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当
的面积最大时点P的坐标.
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于