摘要:向量的数量积的运算律: (1) a·b= b·a ; (2)(a)·b= (a·b)=a·b= a·(b); (3)(a+b)·c= a ·c +b·c. 切记:两向量不能相除,向量的“乘法 不满足结合律.
网址:http://m.1010jiajiao.com/timu3_id_516540[举报]
由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“
•
=
•
”
②“(m+n)t=mt+nt”类比得到“(
+
)•
=
•
+
•
”;
③“t≠0,mt=nt⇒m=n”类比得到“
≠0,
•
=
•
⇒
=
”;
④“|m•n|=|m|•|n|”类比得到“|
•
|=|
|•|
|”;
⑤“(m•n)t=m(n•t)”类比得到“(
•
)•
=
•(
•
)”;
⑥“
=
”类比得到
=
. 以上的式子中,类比得到的结论正确的是
查看习题详情和答案>>
①“mn=nm”类比得到“
| a |
| b |
| b |
| a |
②“(m+n)t=mt+nt”类比得到“(
| a |
| b |
| c |
| a |
| c |
| b |
| c |
③“t≠0,mt=nt⇒m=n”类比得到“
| c |
| a |
| c |
| b |
| c |
| a |
| c |
④“|m•n|=|m|•|n|”类比得到“|
| a |
| b |
| a |
| b |
⑤“(m•n)t=m(n•t)”类比得到“(
| a |
| b |
| c |
| a |
| b |
| c |
⑥“
| ac |
| bc |
| a |
| b |
| ||||
|
| ||
|
①②
①②
.
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
| e1 |
| e2 |
| a |
| a |
| e1 |
| e2 |
| a |
| i |
| j |
| i |
| j |
| π |
| 3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
| i |
| j |
| a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
由代数式的乘法法则类比推导向量的数量积的运算法则?:
①“mn=nm”类比得到“
•
=
•
”;
②“(m+n)t=mt+nt”类比得到“(
+
)•
=
•
+
•
”;
③“(m•n)t=m(n•t)”类比得到“(
•
)•
=
•(
•
)”;
④“t≠0,mt=xt⇒m=x”类比得到“
≠
,
•
=
•
⇒
=
”;
⑤“|m•n|=|m|•|n|”类比得到“|
•
|=|
|•|
|?”;
以上式子中,类比得到的结论正确的个数是( )
查看习题详情和答案>>
①“mn=nm”类比得到“
| a |
| b |
| b |
| a |
②“(m+n)t=mt+nt”类比得到“(
| a |
| b |
| c |
| a |
| c |
| b |
| c |
③“(m•n)t=m(n•t)”类比得到“(
| a |
| b |
| c |
| a |
| b |
| c |
④“t≠0,mt=xt⇒m=x”类比得到“
| p |
| 0 |
| a |
| p |
| x |
| p |
| a |
| x |
⑤“|m•n|=|m|•|n|”类比得到“|
| a |
| b |
| a |
| b |
以上式子中,类比得到的结论正确的个数是( )