摘要:上一章已经复习过解析几何的基本问题之一:如何求曲线方程.它一般分为两类基本题型:一是已知轨迹类型求其方程.常用待定系数法.如求直线及圆的方程就是典型例题,二是未知轨迹类型.此时除了用代入法.交轨法.参数法等求轨迹的方法外.通常设法利用已知轨迹的定义解题.化归为求已知轨迹类型的轨迹方程.因此在求动点轨迹方程的过程中.一是寻找与动点坐标有关的方程.侧重于数的运算.一是寻找与动点有关的几何条件.侧重于形.重视图形几何性质的运用. 在基本轨迹中.除了直线.圆外.还有三种圆锥曲线:椭圆.双曲线.抛物线.
网址:http://m.1010jiajiao.com/timu3_id_516406[举报]
(2013•闸北区一模)假设你已经学习过指数函数的基本性质和反函数的概念,但还没有学习过对数的相关概念.由指数函数f(x)=ax(a>0且a≠1)在实数集R上是单调函数,可知指数函数f(x)=ax(a>0且a≠1)存在反函数y=f-1(x),x∈(0,+∞).请你依据上述假设和已知,在不涉及对数的定义和表达形式的前提下,证明下列命题:
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函数y=f-1(x)是单调函数.
查看习题详情和答案>>
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函数y=f-1(x)是单调函数.