题目内容

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1),B(x2,y2),若PA与PB的斜率存在且倾斜角互补,则
y1+y2y0
=
 
分析:由题意写出PA,PB的斜率,PA与PB的倾斜角互补,可得kPA=-kPB化简出
y1+y2
y0
=-2
即可.
解答:解:kPA=
y1-y0
x1-x0
=
2p
y1+y0
(x1x0)
kPB=
2p
y2+y0
(x2x0 )

由PA,PB倾斜角互补知kPA=-kPB
2p
y1+y0
=-
2p
y2+y0
可得y1+y2=-2y0
y1+y2
y0
=-2

故答案为:-2
点评:本题考查抛物线的应用,直线的斜率,考查计算能力,逻辑思维能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网