摘要:已知点A及抛物线y=x+mx+2.若抛物线与线段AB相交于两点.求实数m的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_515257[举报]
已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2:
的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知
,求证:λ1+λ2为定值.
(3)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',
,若点S满足:
,证明:点S在椭圆C2上.
查看习题详情和答案>>
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知
(3)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P'、Q',
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| 3 |
| 1 |
| 2 |
(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
| AM |
| BM |
| 0 |
| -1 |
| 4 |
如图,抛物线C1:x2=2py(p>0)的焦点为F,椭圆C2:
+
=1(a>b>0)的离心率e=
,C1与C2在第一象限的交点为P(
,
)
(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
+
=
,直线FM的斜率为k1,试证明k•k1>
.

查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| 3 |
| 1 |
| 2 |
(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
| AM |
| BM |
| 0 |
| -1 |
| 4 |
已知椭圆C:
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
以抛物线
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.
查看习题详情和答案>>
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.
查看习题详情和答案>>
已知椭圆C:
+
=1(a>b>0)的某个焦点为F,双曲线G:
-
=1(a,b>0)的某个焦点为F.
(1)请在 上补充条件,使得椭圆的方程为
+y2=1;友情提示:不可以补充形如a=
,b=1之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性. 查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
(1)请在
| x2 |
| 3 |
| 3 |
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性. 查看习题详情和答案>>